419 回国,点球的博弈论(3 / 3)

壹掌遮天 我本二十八 4480 字 2017-09-12

经过研究,表明点球博弈在如下情况时,能够达到一种与众不同的纳什均衡(译注:又称为非合作博弈均衡,以约翰·纳什命名,如果某情况下无一参与者可以独自行动而增加收益则此策略组合被称为纳什均衡)。

在上述模型中,想要达到纳什均衡,主罚者和守门员需要采取策略组合。

上述均衡能够产生两个可预测的实验结果。我们提出了一个“成功率”的概念——点球主罚者和守门员的成功概率应该是一样的。

主罚者和守门员在点球过程中的选择必须相互独立。

简而言之,双方必须只关心当时的得益而不考虑过往的点球经历——双方的选择必须基于无记忆条件下的。

换句话说,在对于一个现时点球的决策过程中,双方都不能被之前的经验所影响。

其实道理很简单,作为点球主罚者或是守门员,如果对方预先知道你的选择,那么形势对自己将相当不利。所以对于两方来说,比较理想的情况是双方各自随机挑选策略组合,并且无法从对方的策略组合中牟利。

维埃塔教授用经典假设方法与真实数据来检定上述两个假设是否成立。数据来自于西班牙、英格兰、意大利以及一些国际比赛,时间限定在1995年9月到2012年6月。

数据的规模达到了总共9017次点球,同时被记录下来的数据还包括:球员的名字(包括点球主罚者和守门员各自的名字),比赛双方球队的名字,比赛日期,点球主罚者将球踢出的方向(自己的左侧、右侧或是中路),主罚点球的时间点,主罚点球前的双方比分,比赛的最终结果,点球是否罚进(未罚进的情况包括被守门员扑救、偏出或者踢中门柱或横梁),上述每一项数据都清晰地分成类别。